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1. INTKODUCTION 

This decade has seen a marvelous return to quantum field theory among 

theorists in high energy physics. The compelling beauty of non-Abc1iz.r; gage 

theories, the striking empirical support for spontanedus symmetry breaking in weak 

interaction theories, the deep connection between asymptotic freedom and the 

approximate scaling in inelastic lepton scattering cn hadrons, the entrancing 

suggestion of quark confinement-all this and mere has drawn cur fcccs cnce again 

on quantum field theories. We have learned tc view field theory as providing us 

with fundamental degrees of freedom rather than thinking that each new particle 

o( rezawr~~e as requiring a new field for its description. Indeed the idea that some 

smzll set of degrees of freedom (quarks and gluonsl provides the basis for all 

observed rnescns and baryons seems tc be a concrete realization of the idea of 

“nuclear democracy” advocates of the last decade. [ Increasing numbers of them 

have been seen with path integrals and Lagrangians lately: I It makes explicit the 

concept that all hadrons are composites; not of, each other, thwgh thrcugh 

unitarity all the hadrons CM become the other hadrons within the restrictions of 

conservation of charge, baryon number, isospin, etc. If is a deeper way: they are 

all composites of quarks and gluons. 

These lectures have no pretentinns tc ccver all possible topics in the 

connection of field theory and hadron p!lysics. Rather the goal is much more 

mcdesr: I m tc touch on a number of tantalizing questions which will 5erve tc 

some extent as an introduction for the student as well as the research person 

curious for more than 3 peek. Several “old” topics will be treated-the 

renormaliation group and the infrared and ultraviolet limits of field t!wory, 

choosing Quantum Chromodynamics (QCD) from among all thccries, various 

tharghts M) rp~ntanecus mass generation. Some newer ones are discussed here 

tm~ideaJ cn cclcr confinement, instantons and the vacwrn state in QCD, and 

related tqics. 
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As general background material I recommend the article on “Gauge Theories” 

by ES. Abers and S.W. Let, Physics Reports z, I (1973); the lectures by 5. 

Coleman at the 1975 Erice Summer School; the book by I.C. Taylor, Caup,e 

Theories of Weak Interactions (Cambridge U. Press, 1976); and the review article 

by R. lackiw, Rev. Mod. Phys. 2, 681 (1977). 

II. THE RENORh!ALIZATION GROUP AND SOh!E CONSEQUENCES 

Quantum field theories of relevance to particle physics all have divergences 

when one calculates in perturbation theory about the free theory characterized by 

propagators 

(Spin Numerator)/(mZ - pz - ic 1 . (I) 

Such theories are not defined by the classic4 Lagrange ~density; one has to give a 

prescription for making the theory finite in every wder of perturbation theory 

before a calculational procedure of recognizable validity emerges. The generally 

accepted manner for doing this is to define the theory by giving the value of a few 

basic quantities (mass, coupling constant, . ..) at some paint in momentum space. So 

one takes the original theory defined by the classical Lagrangiu and renormalizes, 

so the divergences are abso:bed in scales of wave functions (or field operators) and 

other physically harmless locations. Since there is an enormous arbitrariness in 

how, precisely, one ‘renormaiires, w can anticipate an invariance of physical 

quantities on changing the point in momentum space where that renormalization is 

done. The expression of that invariance is the renormalization group. The behavior 

of classes of quantum field theories under this group allows one to select those with 

controllable infrared or ultraviolet jehavior and thus on the basis o! the behavior of 

experiments which probe long or short wavelength phenomena to choose acceptable 

field theories. 
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To illustrate this in action let’s look at a scalar field in D dimensions of 

spaace-time with Lagrangian density 

9 = K(a”~om2 - +wod . (2) 

When A0 is dimensiontess, namely when N = ZD/(D - 2), all the divergences of 

quantities expanded in a perturbation series in b are logarithmic and the theory 

can be renormalired, i.e. made finite, by redefining the field 

Q(X) = Z-K+o(x) 

and coupling 

(3) 

(4) 

where the dimensionless (infinite) factors Z and Zx are constructed so all Green 

functions in the theory are finite. These renormalization factors are defied by 

giving the value of certain Green functions at some point p2 =-p’, p2 > 0, in 

momentum space. These Green functions are given by 

Gg(“)(pl ( . . . P,, X0)6 Dfj~,Pj’ = 

f d.l...dr~e‘ij~fPi.xj<OI T~$O~X,L.40~xn!) 10, . (9 

To lowest order in X0 we have for G (2) and GtN) . 
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G(2)(p2, )i o) = i/(p2 + ic) , (6’ 

and 

dN)@. X ) = - i X,/(2n)D’2 (N-2’ . (7) 
1’ 0 

We define renormalized Green functions by 

G(“)(, ,,... p,,~,u’ = 

and require (this is thesnormalization) 

Z”‘2Go(“‘lpI, . . . p,, X0) , (8) 

-$ i G(‘)(p’, X , u 1-l 
ap 

I 

_ 1 = z2iGt2) 2 

aP2 
o (P,X& 

p%- )? I 

, (9) 

p2J 

and 

GfN)(p . p a VI 
I 

-iX 
1’. . N’ t 

p2=- 3 = (zn)D’2 WZi 
(IO’ 

= zN’2Go(N)(Pj’ X0) (II’ 

p2=- If 

These determine Z and then ix once one bar calculated Co (2) and GO(‘) to 

whatever accuraq desired using perturbation theory in X0 and some method of 

cutting of the divergence integrations. After resealing by Z and Zx via (3) and (*) 

the cutoff is sent to infinity with Q, 1, and u held fixed. What is remarkaMe, then, 

is that the resulting theory is then finite to all orders in 1. 
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But what are we to make of p ? We began with a Lagrangian with a field of 

dimension (&2)/Z and a dimensionless coupling. Now we also seem to have a mass 

scale u. Since 9 is arbitrary, the consequences of the theory should be independent 

of it. We can insure that by noting that since Go (n) (pi,1 o) never heard of u 

u & (Gg(n' (Pj, X0)) = 0 . (12) 

The appearance of u will then be only apparent in this sense: only one real 

phj4cal parameter enters this problem, namely the coupling .I. Since1 is defined 

by a Green function evaluated at pj2 = -u2, A may be traded off for u. Physical 

masses, for examplr, must be of the form 

MPhysical = uFOI) , 

but F(U must depend on l(u) in such a way that 

d hl au Physical = ’ 

From (12) and the definition of C (“’ we learn 

(13) 

(14) 

[u~+8(ti~-:rU~G(“)(P ,‘... P,,X,U) = 0 , (15) 

where 

e(A) 1 “d A 

au l?lofixed’ 

(16’ 

and 
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Y(A) = uau 
4’og Zlaofired . 

(17) 

This differential equation provides restrictions on the form G 
(n) can take, and, even 

more important, knowing the functions B( ti and ,J( ti in perturbation theory can 

frequently give information on C (n) not possible to see in perturbation theory. 

We’ll come to some examples of this. 

Suppose the dimensions of G(“) are 2 then the solution of (15) is 

G(“‘( Epi, A ,c 1 = G(“‘(Pi. it- log 5’. u) x 

0 
x =xp + I 

-1% 5 
I?% ; y(k)‘; dt 

where 

da q -&(t)) ) X(0) I A 
dt I (19) 

(18) 

is the running coupling constant. It tells us that at a wale determined by < the - 

strength of the non-linearity in 2.7 may vary. Clearly that is because we do not da 

perturbation theory in .I but really in the operator i$ 
N which does depend on x. 

As E varies,the argument of i (- log C, moves about and approaches zeroes of 

the function 8(x). Clearly when ). is near A, where a () ,) = 0, Al,(f) = 0 and the 

effective coupling in G(“) 1s not X, the renormalized coupling, but il. Suppose near 

a1 
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B&J = 5,(x-XI) * (20) 

then 

i(-log5) = X,‘E 61 (A-A,’ (21) 

JfB,>O, thenas~~O,X(-logE)+XI. If B,< O,thenas5-or,X(-log5)~~,. 

Zero-es of 6 with positive slope govern the infrared behavior of the theory (cpi+ 0); 

zeroes with negative slope, the ultraviolet behavior @pi a-). 

In QED in lowest order perturbation theory 

BQED(e) = +;e3 , b> 0 

so the effective charge is 

G2(- log E) r e2 
I - b21og c, 

t (22) 

(23) 

so perturbation theory for C (n’ - (pi, e(-log 5). u) is good for i + 0 or really for 

I, <c exp I/(beJ2 with b order unity, and e2 - J/137. me infrared properties of 

QED are then calculable in perturbation theory; e.g. the electron or muon magnetic 

moment. The short distance behavior is unknown and the formula for>‘Clogc ) 

clearly breaks down for 5 large. 

In a pure Yang-Mills theory with the Lagrange density 

-EpyM = -$Fuy”~uue, a-gaugegro~pindex 124) 
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F a 
b c 

YV 
= a,/+ av~~=+fabcAy Av 9 

the function B(g) for small g is 

B 3 8(g) = - 7 8 + O(g’) , B > 0 

(25) 

(26) 

and 

g&log 5 j2 =L 
I + Bg’log I, 

(27) 

so the ultraviolet or short distance behavior of the theory is given by perturbation 

theory in the small coupling &log cl. When we add fermions to the theory the 

total Lagrangian is 

2. 5??y,+~li7+TaiAa-mOl* P (28) 

with Ta a representation matrix for the representation of the gauge group in which 

the fermions sit. If the gauge group is SU(3) and the fermions (quarks) are members 

of the fundamental triplet representation then B in (20) is positive if the number of 

such fermions (number of flavors) is 2 16. The phenomenon of B > 0 and 

predictable ultraviolet behavior is called asymptotic freedom. 

Another consequence of the renormalization group follows from looking at 

the renormalired propagator G(‘)(p’, a , u) when there is no mass term in the 

original Lagrangian. By dimensional reasoning 

~(~)(p~,x,,,) = ,F2F($ a) , (29) 
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where F is dimensionless. Now the renormaliratlon group says 

‘($9 I) = F (‘+*g$,, (+‘+ J;,qp2,y2y(k)ldt . 
(30) 

Define x(l) by 

then 

and 

and 

dloRx(X) = 
dX -iiD ’ 

x(3-log p2/p% = < Y.( u , 
P 

F(l,;(-lbg p’/$)) =q$ x(U) , 

(31) 

(32) 

(331 

G(2)@2*Lp) = y-($x(U) =xp ~~~9p2,u2dtT(i(t)~ . 
(3&) 

If G(2) ha a pole at p2 = M20) away from p2 = 0, it must take the form 

M2(X) = ” 2X (a)-’ x constant 

= “2exp- I“ $$ 

(35) 
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B(x) = bx3 2 (366) 

‘then 

fvW2 = u’exp I/bX2 (37) 

and we see that in a massless theory mass can be generated dynamically only 

outside perturbation theory; indeed M( 9’ is zero to every order of expansion in X. 

III. SELECTING A FIELD THEORY 

With the renormalization group as a tool we can begin the selection of a field 

theory. {Of course, purists will wonder whether it’s a sufficient tool. Th, 

wondering should cease, however; the answer is no, but it’s about all we have of a 

non-perturbative nature in field theory. 1 Years of deep inelastic lepton 

scattering’ (Figure 1) indicates that for ] q2 1 z I (CeV/c12 the constituents (quarks 

or partons) of a proton carrying charge or &spin or hypercharge or charm are 

essentially point-like and free. 

Boldly this is assumed to indicate the field theory of hadrons has asymptotic 

freedom which necessitates a non-Abelian gauge theory plus fermions carrying 

gauge charge plus ordinary Q, I, Y, C, . . . Which gauge theory shall we choose? The 

answer is connected with hadron spectroscopy: that is, the characrer of bound 

states of the hadron degrees of freedom. Following the spirit of the old Fermi- 

Yang proposal that mesons are Nfl bound states one assumes that mesons are 

quark-antiquark bound states with three (or more) kinds of quarks carrying isospin, 

strangeness, charm, etc. for all the internal quantum numbers observed for mesons. 

Baryons are then made out of qqq states. The properties of the well-established 
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quarks are in Figure 2. More quarks wiU be called for by the discovery of states 

like the upsilon, if, indeed, it is made out of q;i as we now presume the n,p , ‘J, . . . 

to be. 

Some examples of the construction of observed states out of q’s are as 

fOUOPs: 

In +> = [,a> (KC> = (us> I*>= (CC. 

08) 

IPb = luud > IR:. i 1 uds > Iti-> I lsss> , 

etc. Tte only flaw in this picture comes when one assumes the quarks in baryons 

are in relative L q 0 states. This requires 1 qqq) to be symmetric. Since L = 0 is 

very Likely to be the ground state, we require another label in which to anti- 

symmetrize the quark wave function. We want quarks to form triplets under the 

group of this additional degree of freedom, which is called color.2 The natural 

color groups are SUM and SU(3). In either case a baryon will be 

le.> = Ica,,qaqg~> ~,B,Y =1,2,3 . 139) 

Since no quantum number associated with color has been observed, we preswne that 

baryuns and mesons are singlets under color transformations. ff we choose SU(2) 

for the color group, then singlets can be made as 1 qoto>, I qoqsq r~aBy’ as 

&sired, but also [qoqo>, I;iaqBqycnBI> and other unwanted states are singlets. 

So choose W(3). Then we can make jqo:o) and 1 caayqoq8qT> into singlets using 

onJnl) tw.a or three quarks. Of course I#% qSGf,> is a singlet, but it comes up as a 

problem (or virtue) for heavier bound states than (probably) yet observed. 
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Now we must have a binding agent to hold the quarks together in the bound 

states called hadrons. This glue must be free of the Q, Y, I, C,... flavor quantum 

numbers listed above since it does not interact with the electromagnetic or weak 

current coupled to leptons. It does carry about 50% of rhe proton momentum, but 

not its quantum numbers. The choice made these days is to identify the glue with 

the gauge bosom of an W(3) non-Abelian gauge theory, A ya(x), a = 1,...8, and have 

them interact with the color of quarks. 

So we have the following quarks and gluons: 

q.&) =1,2,3 Local S-I(3) gauge symmetry 

f.u,d,s,c I... Global SU(N) flavor symmetry 

A,‘(X) c,= I ,...8 Local SU(3) gauge~boson flavor singlet. 

For these fields we write the Lagrangian density 

2 QCD = -$V’ Fj,~ ‘+\f[iJbod6ff,* ($6)w~YA~6f~ 

-&I) 6 Off &]qolf* ’ (4~) 

this defines the theory rww popularly known as Quantum Chromodynamics (QCD). 

In it X6 are the usual W(3) 3 x 3 representation matrices. h10 is a matrix in flavor 

space that contains mass splittings; so we can accommodate in this term the 

phenomenological fact tha; mu = md < ms < mc corresponding to m, < mK < my. 

The renormalization group function B(g) for this theory in lowest order is 

&I : - -de (33 - 2F) 
48n2 

(41) 
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when the flavor index f = I,...F. 

If is instructive to make a side by side list of comparisons between QCD and 

the more familiar QED: 

QED WD 

Photon A u(x) Glum A$) 

l ******.**** 

“hlatte? e, P 

v p, c ,w 

Spectnml of states: 
T, e, v-read fwm Lagrangian 

“Matter” quarks 
s ,W colors and flavors 

~*t*ttt**** 

Spectrum of States: Hadrons 

E0.d states 

l *tt.**t*+** 

Bound statesnr , K,$ , p, A ,... 
psitroniu.m, H-atom 

lnteractim amas bound states: 
yaw” forces, van der Waak 

t*******.*** 

Interaction among bound states: hadron 
scattering 

l **********+ 

Infrared free; “easy” IR properties Ultravioletgfree; “easy” UV properties 

\e l t***.***.*+ 

Fhott24x 53ve lx! c?large Glooos carry color charge 

.**.***.t*** 

Charge is &xrvcd. Charge is not 
confined Charge (color) is not seen; no massless 

bosons; no quarks. Confinement 
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Unfortunately we are not going to provide the full solution of the theory 

defined by yQcD. Indeed, the properties of the ground state are still under study. 

Let’s discuss it a bit, anyway. First of all, in yare massless vector tosons which 

carry color. That’s bad, but not terrible since these bosons interact among 

themselves via the cubic and quartic terms in (F j2 , so the real vector boson 
1Iv 

could be massive, if it is even permitted as an asymptotic stirre. Second it has 

quarks of unknown mass carrying quantum “timbers (color) probably never seen. 

Third, it is asymptotically free3; so its UV behavior is calculable and as far as one 

can tell in detailed comparison with inelastic muon scattering data, compatible 

with short distance behavior seen experimentally. Its infrared behavior is totally 

unknown and not inferable from 9 QcD by just looking at it. This is just the 

opposite of QED where we read yQED like a book; namely, there are photons and 

electrons and small, O(a), corrections. 

So what evidence do we have that yQcD is connected with the world of real 

hadrons? Certainly the charmonium spectroscopy of the states in the mass range 

~3 to 4 GeV/c’ strongly indicates that for heavy quarks, c quarks, various 

qualitative features of QCD are in opratlon. In deep inelastic lepton scattering, in 

e+e- annihilation, in the qualitative features of hadron spectroscopy-in all these 

places we sense QCO at work. 

A very nice set of calculations in this regard has been done aer the past few 

years by the ITEP, .Moscow, group of Shifman, Vainstein, Voloshin, Sakharov, 

Novikov and Okun4 They study the physics of currents formed from massive 

quarks. fn particular the charmed quark. For example, they consider the current- 

current matrix element of heavy quarks 
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D ,,,‘(q) = Id4xe-iq’X<9 /T(l,,=(x)J;(O)) IO> , 

J,=(x) = ~c~xiYxq&x) 

142) 

(43) 

e+%ch is the cc contribution to the electromagnetic current. 

fn the q2 plane for this matrix element one has for large -q2 asymptotic 

free&m where one may calculate DvvC. Near q2 = 0 not much is known. For 

pz&rive 2 q there are known resonances: $, $ I, $“,... to which cc couple. See 

Figure 3. In perturbation theory they are able to calculate graphs like the ones in 

Figure 4. The ITEP group argues that the distances in this perturbation theory 

%*ich are essential in the calculation are x -<mc -1 1 If mc = 1.5 CeVk2, as 

ir&carcd by the $ mass and thccharmed meson masses, then they argue further 

&.I even at q2 = 0, asymptotic freedom has set in for these heavy quark matrix 

ele-nentr They view the world as in Figure 5. 

Now using dispersion relations in q2, they relate the values of D,,“’ at q2 = 0 

they calculate from perturbation using 9 
QCD 

to q2 in the resonance region. 

C&en the masses of the resonances they calculate quite a few numbers of which 

-is * l ‘e7 : 5 keV is representative. 

To study even charge conjugation states they look at forward ligh! by light 

scattering via the electromagnetic coupling to charmed quarks. From these calcu- 

la:is?a csi?g the ITEP Freedom assumption and dispersion relarions again, they are 

able to calculate a variety of quantities related to the C-even X states. 

This approach seems very attractive to me. It maintains gauge invariance 

and reiativistic co-variance at every stage. It is necessary, of course, to use the 

dispersion relations with care and good sense so one doesn’t demand information 

akxxr tea many q2 derivatives of D ’ 
IJV 

at q2 = 0, for then one is reconstructin 

D >” ’ via a Taylor series,and somrwhere that is bound to fail. 
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In any case a significant number of phenomena about heavy quarks are 

derivable in this fashion. A blind application to strange quarks works “OK,” and to 

light quarks doesn’t do well at all. That is as it should be from the distance 

arguments given before, but leaves a lot of work to be done on the QCO aspects of 

light quarks. 

IV. DYNAMICAL MASS GENERATION 

The next, topic 1’11 take up is the intriguing question of generation of mass in 

non-Abelian gauge theory by dynamical meas. This is a situation where there 

appears no mass scale in the Lagrangian density (so in yQCD above, MO = O), but 

since a mass is introduced via the renormalization process, it is possible for the 

renormalized theory to have mass. U’e saw how this might operate by the study of 

the renormalization group in Section II; now we’ll put a bit of flesh on these bones. 

We really want to study QCD. So M’s imagine MO = t in yw,. It is then 

9 - IF % 
QCD - -4g2 yv “Y 

‘*{iti , 

with 

CD,,)& = a ~ ib + i(TC)&A ,,, 

The symmetry in this is SUWcalor @C where 

C = U(F)ve,to, @ U(FJAxial 

(44) 

(45) 

and F is the number of flavors. Associated with the global symmetry G are the 

conserved currents 
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(47) 

yra 5 
)i f.;;,Yrr,T,,.“%l ’ J”;” q *,,,jpgs%% 

with a: i,...F’-I. The F are F x F representation matrices of SC(F). These 

currcnt~, except for 4, remain ccnservcd under interaction. The axial current 

has an “anomaly” coming from the short-dirtance structure of the thecry, and its 

divergencr is not zero, but 

WhereF ’ = ‘zc 
1Iv 

F a is ille dua: gau~c field. 
UWTOT 

New the symrr,etry of 01e hadron eta is nor as large as G. It is only 

“VC,t<d (1) x SI’fF! with F2-I pseudoscalar mesons which are more or less cer:ainly 

m.z.ssrl~ss Ccl+:one bisons. Even the SC(F) flavor symmetry ir approximate, and 

UK masslers lxsonr pick up P CUSS possibly frcm the weak inte:acticns. 

To gexralc these Coldston.. bosons w must break the chits& 

::I *xiajCF’ @CVcctor (F)) ~ymr,crry of the bare vxuurn (s defined by _E”,,,). 

Dr.cmsr of t!w snofna:) it ir pcrzib!e (below w?lI even see it’s likely) that there is 

nc m?szlrss ~~.,z;I~ ass‘:&tted uith the i: Axia,il) syn~~netry. This is fi~le, acUa!ly, 

rince t!wi I’ zpp?s:~r :G be no ‘xli rnasslcrr .re- C -d small mass in practice) object. 

Kc ca? &mrratr a !nass scale in a Lagrangian thtrry by two prescnl:y 

acceptii-lr mz:iwls: I I >!et a scab.: meson ficld, 0, cwpled to quark: as 0 q? 

devclw,2 a Y.~~:IUIII cxpcrarict: valur c*; f 0. This is .z “spn;arxo::s symn:rtr) 

txeaki~’ ?nd is cssenrially kinematic in Wigir;; t!>al is, il is put in hy hard. !2!Uc 
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can have composite fields like q;i itself develop a non-zero vacuum expectation 

value. This is dynamical and by the same renormalization group argumentr used 

befcre must take the form 

< T~(o;~(o) > = p3 exp - lg dx:E (x1 (f49) 

How can we investigate this possibility in QCD? Let’s look at the U’ard 

identity satisfied by the proper quark-quark-axial vector current vertex rXa 

q’rha(p, p + q) = - tr 3T’S-‘(p + q) + S-‘(p)f Y5 1 (50) 

where S(p) is the quark propagator and TUis a flavor matrix. Let’r look at this as 

0 <-I qi * 0. The right hand side approaches IY>T , _ (p)}. If this anti-commutatcr is 

nowxro, then ria must have the property 

TJP, P + 4) - F,$?p, ~1’4 6, I 
q-0 ‘4 

(511 

where F,, is a constant and 9 1s the wave function to find a q< pair io the 

pseudoscalar state called pion (Figure 6). In airy order of perturbstic,!? t!lrcr~y 

f’(p) is proportional tc A(F~)P, which anti-comnures wit!) ‘I’ SC ir5T a ‘-+p); is , _ 

zero. To generate a pion pole at q2 = 0 WC need a non-perturbarise t-fltct y:l:creby 

S-‘(p) = A(p’ B(p2) (52) 

thrn the u,ard identity tells us 

2B(p2) = F+flp, F! . 
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So proving that a non-zero anomalous part to S-‘(p) exists would be equivalent to 

showing there is a massless pion. This is not more than a statement of Goldstone’s 

theorem, since B(p’) has dimensions of mass it introduces into the problem a scale 

thus breaking the chiral symmetry, thus giving rise to a massless boson 

To investigate the presence of B one looks at the Bethe-Salpeter equation for 

9 and concludes 

B q 

/ d4p p2A2(p2) -“Bz(p2, K 

where K is the irreducible kernel for q{ scattering in QCO. Now Lane5 has argued 

that only in an asymptotically free theory can we investigate this equation in some 

convincing way. Namely, we can look at the p2* - behavior of B and conclude 

that the equation w have a.solution. Now since 5-l is a gauge’dependent object, 

the conclusion still leaves one uneasy. Of course, the gauge dependence comes 

from the fact that 

S(p) : I d4xe-ip’ ’ Q) tT(+)q(O)) 10 ’ 9 

and $x!q(O) is gauge dependent except at x = 0. Since p2 + - “takes” us to x : 0, 

the conclusion stated may be OK. 

So we see that this standard Nambu-Jona-Lasinio approach is tricky in gauge 

theories, because gauge invariance (a crucial aspect of the theories) is treated 

cavaiierly. What we need, for example, is a compact way to calculate quantities 

like G k(O)q(O) i 3~ directly. ( You can see from (55) that it is zero if B(p’) is 

zero. ) This is zero in every order of perturbation theory and evaluating it outside 

of perturbation theory has proven more or less intractable without going full circle 

to equations like (14) for 8. 

(54) 

(55) 
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We can, however, get a feeling for the issues by looking at a model introduced 

by AnseJ’m6 in 1959 and analyzed in 1961 by Vaks and Larkin7. It exists in one 

space and one time dimension and has N fermions I),...$~ coupled via 

L? = &ia* + g212 (j$)’ , (56) 

with 

(57) 

The generating functional for this theory is 

=iW[Jl _ J d,+,d~ eifiy+J*+ $1 

which is equivalent to8 

(58) 

,iWv(Jl q ,d*d~doei~Ui~*-a2/2-g~ l TU+TJ 1 , 
(599) 

which can be seen directly by integrating over the auxiliary field o. o is mt a 

dynamical variable, -i+ does not appear in 2, but simply plays the role of 

separating the @$)’ in the interaction and allowing us to deal with the more 

familiar form for yin (53). If <o> i! 0, then the fermion acquires a mass 

mF = g<o> ; so o is “substituting” for T$. 

To investigate whether <o >t 0, let’s set u(x) = Y + x(x) and study the energy 

density of the resulting theory as Y varies. If we m&e this substitution and 

introduce a source S for the x,field we have 

=iWvI 3 = INhtx= 
if[~$+-x2/2-XY-g”$ -g& +$(I 

(60) 
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=iw PI I 1 dxexpij -%-vx-it:log[ 1-h: ]+Sx 
[ 2 

] , ik 

= J dXed+Sx I (62) 

4 
This ??is non-local, non-Hermitean, and non-finite. It is non-local because it 

antains all the Frocesses in Figure 7 where the dashed line represents ax and the 

solid line a propigator (6.~ gv;-I. It is non-Hermitean because it contains particle 

pr-oduction. It is non-finite beau.% the first rwo graphs in Figixe 7 are infinite and 

are the weave function and mass renormalization of the original theory, which, by 

power counting, is just renormalizatle,at D q 2. 

After renormalization ,the ~acuurn, or ground state is defined by <x> : 0 or 

equivalently a+ 1 = 0. In E space-time dimensions this means 
x=0 

Y I I* 2A2tr~l~r~D;~1 [(D-I) +[F(A)2+y(l-y)I ‘-I 

-F($-’ = S 

with the dimen5ioniess coup!ing 

.I. = /mg(#‘Z - ’ 

defiid in terms of the normaliz,etion point U, and 

(63) 

(64) 

F(x) = gvlu (65) 
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In D = 2 + E dimensions we can study (63) as S * 0. Requiring the vacuum to be 

stable which means a2&@R)/a X’[~ =O > 0, we find 

I 

v.0 x2< IE 
s +a 

VI0 A 2 > “E 
(66) 

At D = 2 exactly we can carry out the integral at S = 0 to find 

(67) 

and dixcver F(X) behaves as shown in Figure 8. From the renormalization group 

we know 

c!!?pL-&). ) 

so we deduce that B(X) behaves as in Figure 9. Near A = 0 E( ti behaves as 

6(X) = - g + A P/X2+ . . . ) 

(6s) 

(69) 

SO the non-analytic str~ctwe in %A), coming iron the non-analytic behavior of 

F(x) (or mF if you like), shows up in the non-perturbative requirement of vacuum 

stability. The infrared stable behavior near X 2 = n is a direct result of the non- 

analytic terms in (69) cr more precisely (6s). 

The hope in treating this unrealistic model in dctzi19 is to learn what must De 

the ingredients for a study of the more complicated vacuum of ncn-Abelian gage 

theories. To date that has not been a realized hope. 



-2o- FERMILAB-Conf-78/33-THY 

V. QUARK CONFINEMENT 

U’e have talked at length in these lectures about ,quarks (with quantum 

numbers given in Figure 2) and the gauge bisons which are supposed to glue them 

together. To date no one has reported a convincing sighting of either a quark or a 

glwn. Perhaps we will find them. Even more intriguing: perhaps we will never 

find them. This, taken at its face, means Y. CD does not represent the spectrum 

of QCD but only the degrees of freedom: A,,Q(x) and qgf(x). The idea that these 

degrees of freedom can never be observed by themselves but only in the bound 

state combinations of color singlets we call hadrons goes by the label of color or 

quark confinement. 

Clearly this question of observing color cc-ordinates is an infrared or long 

distance problem: only if we can separate quarks can we study them individually. 

At short distances we may sense their existence by local probes of the weak 

current. With reference to the infrared behavior of QCD let’s look at the effective 

coupling 

gQCD2(p211L2) = g’/(l + bg2 log p2/u2) , b > 0 . (701 

For p2* w , it goes to zero; that’s just asymptotic freedom. As p2- 0 ) g grows 

and in rhe approximation which leads to (70) blows up. 50 the long distance 

behavior of QCD is a strong coupling problem. In contrast, QED has b ~0 in (70) 

and t\e infrared behavior has gQED2 * 0. This ties in nicely with the fact that the 

spectrum of QED can be read directly from the Lagrangian. 

In (70) there is the arbitrary renormalization scale IJ which tells us when iz is 

small (p2 1, p 2, or large (~‘5 u2). Presumably it is when s2 is order of unity that 

strong coupling and binding effects come into play. So we can tentatively identify 
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y = 1 GeV as the hadronic scale and expect that when p2 > I (C&V?, gQCD2 is 

small. Similarly when distances > l/u we can expect strong forces to cwne into 

Play. 

To investigate the forces between colors we develop Noel a picture originally 

due to Ken Wilson.” Picture two color charges at a fixed time separated by a 

distance R (Figure 10). As R grows, at some point the energy in the field between 

the charges becomes of order mhadron. At that distance it becomes energetically 

favorable to put that energy into the creation of two color charges which then 

shield the color force between the original charges (Figure II). Be!ore this 

creation of pairs from the “vacuum”, we can ask about the forces between the 

charges. 

To do this in a relativistic fashion we need a space-time picture. So imagine 

that at t E 0 the pair is created and separates a distance R in a short time; then 

moves along for a long time (=T) at distance R and finally annihilate (Figure 12). 

What we have pictured here is a large charge loop of area= RT located in the 

vacuumSuppose we calculate the energy per unit volume of this loop 

e-iE(R)T i/Jw 
r <e 

charge(x)AUa(x)d4x 
> . 171) 

where the average is tak’en over configurations of the gauge field AU%). For a 

single charge moving along the path z ,,( d the current is 

J&ge(x) = f dr g d*6”(x-z(TN I 

exp - iE(R)T z eexp ig f dz ,,A’ (z(T)) > 
LOOP 

. 
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To evalaa:c E(R), the energy stored in the loop as a function of R, we must 

evaluate due vacuum average of the loop integral. V/hen that integral behaves as 

exp -iR “-i aiti 3 > 0, we can say the binding energy is confinirsg since it rises with 

scparatirn h QEf, E(R)-+ finite number. In QCD it ir conjtcturrd that 
RI- 

E(R) 2 R for large R; equivalently the loop integraf,behavcs as ex;: --icAre= of loop;. 

Filsun has sradied thjs !oup integral in QCII on a lattice and concludes that for e’ 

large e,ncq::. :he loop integral behaves ELI the area. 

TL address the question of confinfrnent it scc~z~~ wc wght tu look at the 

vacwx ~~r~tu~e of QCD to be sxe we have it in hand. Later we ran come to the 

question of evaluarint the energy of a 10~:: in the v~zcuum. 

To I& a? vas*xz in quacni:: theory we muzt first go bxk to classical 

@ysics Recall the elementary problem of the harmonic oscillator with 

hani!tonia? 

,,,!f ++ 
Lrn (74) 

Tix daScal ground state I:= x = 0. The quantum grwnd stcte is characterized by 

JIo -e 
-x2 (75) 

v.fGch reprm:z :Luctua:ira: &cut the clasicsl ground state a? Y = 0. 

In QED cur cc-ordinate io the value of AP(x; at every point In space-time. 

The cles~ca’ grcuml state hz: F,,., - _ - 0 and the mrrzy m%nenwn tensor c,,v q 0. 

Me& CC5 3lln.5 UT tc csnchde that A: I .? is a fir;e c:~rrlc~: ground stitt. The 

qumam mh-i’:;s:l glw.-od state is rcy;rescntcd by 2 wave luncric~~al yoI 4,jx: 1 

mr~;~rhl~, !iie 
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lyo[ P> ] o exp - I d’x A,WA” (~1 . (76) 

In QCD we expect that in the classical ground state F,,va(x) = 0 again and 

also e 
YV 

= 0. This does not mean, however, A a 
u 

= 0, and that’s they key to the 

subtlety of the quantum vacuum in QCD. Let’s go over to a matrix form!ilation of 

the theory by introducing a set of matrices Ta satisfying 

( TQ,TDl = ifaSyTY 

with f 
OBY 

the structure functions of our gauge group. NOW let 

F,Jx) = -i 1 T%uu@Ix) , 
a 

and 

AU(x) = -i 1 fAP%) 
a 

Fpv(x) = .3v4vW- ~vAfx)+[Au,h,,l . (80) 

ff F,,(x) = C it implies 

(77) 

(78) 

(79) 

A,,(x) T g-‘(x)2 J,(X); g(x)+ = g-‘(x) , (81) 

and g(x) is in the gauge group. SC AU(x) is a pure gauge field. The reFresentatic)n 

ot Au(x) in terms of g(x) may nor be uniqw. We must ask how many different -- 

ma.t?pings there are frcm c, t) to the gauge group. Each such inequiv+lent mapping 
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wiU give a different classical vac”“m with F uy(x) = 0. Mathematicians have been 

kind enough to prove for “5 that for W(N), (N 1.2), as the gauge group, there are a” 

infinite nuinber of inequivalent mappings labeled by an integer q : 0, fl, %.. 

Essentially ihis represents the number of times (and “direction”) that the 6, t) 

manifold is traced out on the SU(N) manifold. 

A visualizable example is the mapping of the real line onto a circle. In the 

lar<uage above we consider elements g(x) in O(2) and ask how many times the 

manifirld of g(x), the circle, is covered as - -< x <a. Use the usual stereographic 

projection of the real line onto the unit circle (Figure 13) with 6 the angle of the 

line joini- the north pole to the real line. As x goes from ---to += the angle e 

NN from -nJ2 to +n/Z. Let P, the angle on the O(2) circle by B q ?n(20) then we 

cover the g(2) manifold ?n times as x goes over its ma&Id. 

From this observation on the classical vacuua in QCD which is due to Belavin, 

et al., II \~e conclude there are an infinite number of inequivalent classical ground 

states U’hich one of the 1 *q >, q = 0, I, 2,... shall we choose for the quantum 

m? 

Let’s go back to an example to guide us. Consider the hamiltonian 

H = p2 + g(l - cos x) (82) 

ne classicti fh~r) has an infinite nunber of equilibrium states (ground states) at 

x = %2zq, q = 0, I, 2,... Which one shall we choose for the quantum ground state? 

In got-d old q~anrum mechanics we don’t have to think twice about this since these 

clasical grwti s:ates are connected by tunneling so a linear superposition 

IVacuum> = ql{aaqlq> , 
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with /q> a state centered about x= Zxq, is needed. 

In field theory we must be a bit more careful. Consider the $’ theory 

Y= Ma “+J2 + 2 $ - x2e4 

so the potential is 

22 
V(.$) = -“ra + )i2g4 

(84) 

(85) 

and has two equal energy minima at 

bmin = *p/2x (86) 

If the number of dimensions of space-time is greater than two, there is no tunneling 

between these classical ground states and either one forms the lowest state, in the 

smse, 

y 

0 

[ ~1 ~ .-I dDx [ $(x) - 6 min] ’ 
(87) 

on which the hilbert space of states may be built. We are to choose one or the 

other of the classical ~acuua, (86), and the physics should be much the same. 

So we want to inquire if there is tunneling between the infinity of classical 

ground states in QCO. To look at this it is convenient to go over to imaginary 

time, {the lectures of S.J. Chang at this seminar indicate how to do all this 

directly in Minkowski space], or Euclidian space. In quantum theory going under 

the barrier is an operation that can be described as a motion in imaginary time for 

a real cc-ordinate since 
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g = ,CZiL(~~ = i/Zm(VW - ET , (88) 

dx 
dm = mvm (89) 

We want t3 coxider only solutions to the classical QCD equaticns, which are 

DF”‘= 0 
u (90) 

L),,lv = au*+ [Au. *I , (91) 

which have zero 8 
uv’ 

This soliltion can take us from one classical vacuum to 

another. Snow 

e uv=b[(Fu~-~u~)(~x~+;;~)+ uvvl , (92) 

F = 1 Kc a 
uv ,usTL 

h6 
uy 

= 0 requires 

F’L -0 = iF 
UV uv 

Take, say, F z; 
uv uv’ 

This meax 

(93) 

(94) 
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F,2 = Fjl, , F13 = -Fz4 , and FL,, = Fz3 . 

Suppose we introduce (Yang, 12 Belavin and Zakhorov’3) 

y = (X, + ix,W7 , z = (x3 - ix,W7 

then the condition Fuy = Fvv means 

and 

F 
YZ 

= o- Ay = M-lay%4 , det M = 1 

Fyi;+ Fzz = 0 

(95) 

(96) 

(97) 

(98) 

This last equation may be written in termr of the hermitean matrix 

H E MM+ 

-d 
I 

1 wH-‘aiH) CM-I)+ = 0 
I 

(99) 
j=y,z J 

Under a gauge transformation M * Mg, g* I g-l, so H is gauge invxiant. The 

general self-duality conditicn reads 

1 ai’H-‘$H) i 0 
i=r,z 

. (loo) 

The general soiution of this is not known. Particula solutions are known fcr W(2). 

The first is dw to Eel&n, et al.” and reads 
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Au(x) = 

with 

g(x) = (x4 +iZ.Zj&V , 

(101) 

(102) 

an element of W(2). This solution has q = 1 where we characterize solutions by the 

topological charge 

9= ‘I 
32n2 

d4xFyvae a (103) 
Irv 

and can connect classical ground states with label q to states with q ? 1. These 

classical field configurations with non-trivial topological charge are called 

instantons. 

In W(2) a set of solutions with q = N have been given by ‘t Hooft 14 
; Corrigan 

and Fairlie”; and lackiw, Nohl, and Rebbi. 16 They are 

Au% = - II “p,“log 4(x) 

where riuy a can be read off from (101) and (102) when N = I. @I(x) satisfies 

a2+k4 = 0 

(104) 

(105) 

and for q : N has the form 

. (106) 

The existence of these tunneling solutions give a classical path with real co- 

ordinate .4 ,,aand imaginary time which takes us from classical vacuum jq > to 
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Iq +I>>, N = 1, 2,... The transition probability from 1 q > to Iq + N> is finite and 

approximately of order 

exp -N(8,2/g2) (1107) 

with g the QCD coupling constant. 

This all means that the quantum mechanical ground state in QCD is a 

superposition of classical vacuum 

1 i-D = “=fmc”l “> , (108) 

whereas in QED 1 n> = IO >. We go from In > to I n + 1, by a gauge transformation 

since in state I n we have F LL” E 0 and 

\(“)(xl q g*-‘a ug” (109) 

where the gauge transformation g, takes us from jr+ to b + I >. This gives rise to 

a pericdicity similar to that in crystals and Bloch’s theorem tells us 

]sb= I- eineln > . (110) 
n=- m 

Some immediate physics may be extracted from this vacuum structure: 

1. Perturbation theory ahout A,,= = 0 is not strictly correct since there are 

tunneling amplitudes of order exp 4ge2) to other field configurations. Presumably 

one wants to perturb about /n>. 

2. The x-called UA(l) problem is solved by this. We’ll come to this. 

3. It may be connected with quark confinement. 

Let us look now at the UA(l) problem. 17 In massless QCD with F flavors rhe 

symmetry of the theory is the gauge group and 
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c t1avor = SU(FIA@ SU(Fjy @ lJy(l) b3 UA(l) . (111) 

The current associated with UA(I) is 

.3$(x) = ,j‘S,Y,Y 591 (112) 

The other currents are conserved to all orders in g, while the axial current has an 

anomaly so 

( (113) 

i: cg2aaxa (114) 

vhere we note that F a; a is a total divergence. Now it locks like 
uv YV 

Q5 = 1 d3x..@$z, t) (115) 

is cat-served because of the total divergence structure of F OF =, but because 
!Jv llv 

of the instanton fields with q f 0 there are matrix elements of a -&f the form 

aI& ati/ m 0 eean 
2 2 
‘g (116) 

which vanish in all orders of perturbation theory. Chiral symmetry breaking which 

leads to massless pions u-ould, we usually expect, lead to a ninth Coldstone bason 

vith datum numbers of a -.J?? But since $ is not conserved really, the 

prcblem is absent. 

So we see that 1~2, is not chiralfy invariant. Indeed because of the anomaly 

I q,Q51 = -2Fg, (117) 
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and the real invariance of QCO is 

U Vector(l) @ WV(F) @ WA(F) . (118) 

How SUA(F) is broken to produce massless pions is still not agreed upon in detail. 

We began our excursion into instantonology becaae we wanted to learn about 

the QCD vacwm for confinement purposes. Polyakov 18 has given convincing 

arguments how instantons give rise to confinement in two space and one time 

dimension, but in 3 space, one time a similar hope has not yet been realized. 

Indeed the various approaches to confinement have tried to populate the 

vacwm with various objects. Mandelstam 19 has considered tilling the VSCUU~ with 

magnetic monopoles which will crowd electric tieId lines into “strings” (much in the 

way Cooper pairs allow Abrikosov flux lines in type II superconductivity) which will 

then bind color. So tar these attacks have been very illuminating, but not yet 

conclusive. No doubt at the next Topical Seminar held here in Tubingen we will 

hear conclusive progress in this matter. I know the generous hospitality and 

excellent organization of our hosts makes all of us plan on returning for that 

seminar before the university here passes its second 500 years. 
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